Catalytic center of cyclodextrin glycosyltransferase derived from X-ray structure analysis combined with site-directed mutagenesis.

نویسندگان

  • C Klein
  • J Hollender
  • H Bender
  • G E Schulz
چکیده

An X-ray structure analysis of a crystal of mutant Asp229----Ala of cyclodextrin glycosyltransferase from Bacillus circulans (Ec 2.4.1.19) that had been shortly exposed to beta-cyclodextrin showed density corresponding to a maltose bound at the catalytic center. The crystal structure was refined to an R-factor of 18.7% at 2.5-A resolution. The catalytic center is defined by homology with the structurally known alpha-amylases and by the observation that mutants Asp229----Ala and Asp328----Ala are almost inactive. By model building, the density-defined maltose was extended to a full beta-cyclodextrin, which then indicated the general locations of seven subsites for glucosyl units. The catalytically competent residues Asp229, Glu257, and Asp328 are at the reducing end of the density-defined maltose. In the unligated wild-type structure, Glu257 and Asp328 form a 2.6-A hydrogen bond between their carboxylates in an arrangement that resembles those of the catalytically competent carboxylates in acid proteases. Presumably, the first catalytic step is an attack of the proton between Glu257 and Asp328 on the oxygen of the glycosidic bond.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1.

The product specificity and pH optimum of the thermostable cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacterium thermosulfurigenes EM1 was engineered using a combination of x-ray crystallography and site-directed mutagenesis. Previously, a crystal soaking experiment with the Bacillus circulans strain 251 beta-CGTase had revealed a maltononaose inhibitor bound to the enzyme in an...

متن کامل

Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity.

The enzymes from the alpha-amylase family all share a similar alpha-retaining catalytic mechanism but can have different reaction and product specificities. One family member, cyclodextrin glycosyltransferase (CGTase), has an uncommonly high transglycosylation activity and is able to form cyclodextrins. We have determined the 2.0 and 2.5 A X-ray structures of E257A/D229A CGTase in complex with ...

متن کامل

Improved activity of β-cyclodextrin glycosyltransferase from Bacillus sp. N-227 via mutagenesis of the conserved residues

β-Cyclodextrin glycosyltransferase (β-CGTase) belongs to the α-amylase family of enzymes and converts starch to cyclic oligosaccharides called β-cyclodextrins (β-CD). The β-CGTase from alkalophilic Bacillus sp. N-227 was separately mutagenized to give three site-directed β-CGTase mutants, Y127F, R254F and D355R, that showed enhanced cyclization activity towards a starch substrate from 1.64 to 2...

متن کامل

Structure--function characterization of cellulose synthase: relationship to other glycosyltransferases.

A combined structural and functional model of the catalytic region of cellulose synthase is presented as a prototype for the action of processive beta-glycosyltransferases and other glycosyltransferases. A 285 amino acid segment of the Acetobacter xylinum cellulose synthase containing all the conserved residues in the globular region was subjected to protein modeling using the genetic algorithm...

متن کامل

Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases.

MurG is an essential glycosyltransferase that forms the glycosidic linkage between N-acetyl muramyl pentapeptide and N-acetyl glucosamine in the biosynthesis of the bacterial cell wall. This enzyme is a member of a major superfamily of NDP-glycosyltransferases for which no x-ray structures containing intact substrates have been reported. Here we present the 2.5-A crystal structure of Escherichi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 31 37  شماره 

صفحات  -

تاریخ انتشار 1992